35x+147(3x^2+4x)=3586

Simple and best practice solution for 35x+147(3x^2+4x)=3586 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35x+147(3x^2+4x)=3586 equation:


Simplifying
35x + 147(3x2 + 4x) = 3586

Reorder the terms:
35x + 147(4x + 3x2) = 3586
35x + (4x * 147 + 3x2 * 147) = 3586
35x + (588x + 441x2) = 3586

Combine like terms: 35x + 588x = 623x
623x + 441x2 = 3586

Solving
623x + 441x2 = 3586

Solving for variable 'x'.

Reorder the terms:
-3586 + 623x + 441x2 = 3586 + -3586

Combine like terms: 3586 + -3586 = 0
-3586 + 623x + 441x2 = 0

Begin completing the square.  Divide all terms by
441 the coefficient of the squared term: 

Divide each side by '441'.
-8.131519274 + 1.412698413x + x2 = 0

Move the constant term to the right:

Add '8.131519274' to each side of the equation.
-8.131519274 + 1.412698413x + 8.131519274 + x2 = 0 + 8.131519274

Reorder the terms:
-8.131519274 + 8.131519274 + 1.412698413x + x2 = 0 + 8.131519274

Combine like terms: -8.131519274 + 8.131519274 = 0.000000000
0.000000000 + 1.412698413x + x2 = 0 + 8.131519274
1.412698413x + x2 = 0 + 8.131519274

Combine like terms: 0 + 8.131519274 = 8.131519274
1.412698413x + x2 = 8.131519274

The x term is 1.412698413x.  Take half its coefficient (0.7063492065).
Square it (0.4989292015) and add it to both sides.

Add '0.4989292015' to each side of the equation.
1.412698413x + 0.4989292015 + x2 = 8.131519274 + 0.4989292015

Reorder the terms:
0.4989292015 + 1.412698413x + x2 = 8.131519274 + 0.4989292015

Combine like terms: 8.131519274 + 0.4989292015 = 8.6304484755
0.4989292015 + 1.412698413x + x2 = 8.6304484755

Factor a perfect square on the left side:
(x + 0.7063492065)(x + 0.7063492065) = 8.6304484755

Calculate the square root of the right side: 2.937762495

Break this problem into two subproblems by setting 
(x + 0.7063492065) equal to 2.937762495 and -2.937762495.

Subproblem 1

x + 0.7063492065 = 2.937762495 Simplifying x + 0.7063492065 = 2.937762495 Reorder the terms: 0.7063492065 + x = 2.937762495 Solving 0.7063492065 + x = 2.937762495 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7063492065' to each side of the equation. 0.7063492065 + -0.7063492065 + x = 2.937762495 + -0.7063492065 Combine like terms: 0.7063492065 + -0.7063492065 = 0.0000000000 0.0000000000 + x = 2.937762495 + -0.7063492065 x = 2.937762495 + -0.7063492065 Combine like terms: 2.937762495 + -0.7063492065 = 2.2314132885 x = 2.2314132885 Simplifying x = 2.2314132885

Subproblem 2

x + 0.7063492065 = -2.937762495 Simplifying x + 0.7063492065 = -2.937762495 Reorder the terms: 0.7063492065 + x = -2.937762495 Solving 0.7063492065 + x = -2.937762495 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7063492065' to each side of the equation. 0.7063492065 + -0.7063492065 + x = -2.937762495 + -0.7063492065 Combine like terms: 0.7063492065 + -0.7063492065 = 0.0000000000 0.0000000000 + x = -2.937762495 + -0.7063492065 x = -2.937762495 + -0.7063492065 Combine like terms: -2.937762495 + -0.7063492065 = -3.6441117015 x = -3.6441117015 Simplifying x = -3.6441117015

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.2314132885, -3.6441117015}

See similar equations:

| 2x+4=5x+15 | | 11X=-2X+23 | | 2p^2+p=0 | | x^2+8=7x | | 64-100q^2=0 | | a^2-4=0 | | 3x+8=-109-10x | | 41-3x=15x+17 | | 13-8x=78-43x | | 5x(x+1)-2x(2x-1)=20 | | 6x+3=9x-4 | | 3x+20=12x-61 | | 3x+20=12x-60 | | 2(x+10)+8=0 | | 19x-7x-2=31-15+6x | | 4x+5=2x+31 | | 4y+8=3y-3 | | (8n^2-6n+1)-(2n^2+3n-10)=0 | | 4x+20=5x+11 | | (6x^2+8x-5)+(x^2-2x-6)=0 | | (8m-n)-(3m+7n)=0 | | 9=k+10 | | 5(2x+3)=-(16-3x) | | 2m+1=m+3 | | 1600x=9000 | | w-2=-6 | | 4+(-3)= | | 3x+y=-5 | | 4x+2y=28 | | 23+X=34 | | 6x^2+84x+294= | | 3a^3+21a^2+36a= |

Equations solver categories